Name \qquad

1. Suppose we have a 2^{32}-byte virtual address space. How many bits are needed to uniquely represent each virtual address?
2. Suppose the size of a virtual address space is 2^{32} bytes and we partition the virtual address space into 2048-byte virtual pages. How many PTEs are needed in a 1-level page table?
3. Suppose the size of a virtual address space is 2^{32} bytes and we partition the virtual address space into 2048-byte virtual pages. How many bits are needed to represent a VPOs?
4. Suppose we have 8 GB of RAM. How many bits are required to uniquely address each byte in RAM?
5. Suppose we have $8 G B$ of RAM and we partition the RAM into 2048-byte physical pages. How many physical pages are created?
6. Suppose we have $8 G B$ of RAM and we partition the RAM into 2048-byte physical pages. How many bits are needed to represent the PPNs.
7. Suppose we have $8 G B$ of RAM and we partition the RAM into 2048-byte physical pages. How many bits are needed to represent the PPOs?
8. Suppose we have $8 G B$ of RAM, we partition the RAM into 2048-byte physical pages, and each PTE is 8 bytes. How many bits are used for each page table entry?
9. Using Figure 9.20, determine the value in RAM at the physical address associated with the virtual address 0x03d7.
