
EXPRESS 2007

Encoding First Order Proofs in SMT

Jeremy Bongio1 Cyrus Katrak2 Hai Lin3 Christopher Lynch4

Ralph Eric McGregor5

Mathematics and Computer Science Department, Clarkson University, Potsdam, NewYork, United States

Abstract

We present a method for encoding first order proofs in SMT. Our implementation, called ChewTPTP-SMT,
transforms a set of first order clauses into a propositional encoding (modulo theories) of the existence of a
rigid first order connection tableau and the satisfiability of unification constraints, which is then fed to Yices.
For the unification constraints, terms are represented as recursive datatypes, and unification constraints are
equations on terms. The finiteness of the tableau is encoded by linear real arithmetic inequalities.
We compare our implementation with our previous implementation ChewTPTP-SAT, encoding rigid con-
nection tableau in SAT, and show that for Horn clauses many fewer propositional clauses are generated by
ChewTPTP-SMT, and ChewTPTP-SMT is much faster than ChewTPTP-SAT. This is not the case for our
non-Horn clause encoding. We explain this, and we conjecture a rule of thumb on when to use theories in
encoding a problem.

Keywords: SMT, first-order, tableau, Yices

1 Introduction

Recent techniques in SAT solving have resulted in extremely fast procedures for
solving propositional satisfiability problems[8], based on the DPLL method[4]. As
an application of these techniques, we have developed an automated theorem prover
called ChewTPTP-SAT[6], which encodes rigid first order theorem proving problems
as SAT problems, and solves those SAT problems using Minisat[8].

Rigid unsatisfiability has been studied as early as [3,1]. A set of first order clauses
is rigidly unsatisfiable if and only if there exists a closed rigid connection tableau
for that set of clauses[10]. Our encoding uses this fact and solves the satisfiability
of a set of rigid clauses by encoding the existence of a rigid connection tableau in
SAT.

1 Email:bonjiojp@clarkson.edu
2 Email:katrakc@clarkson.edu
3 Email:linh@clarkson.edu
4 Email:clynch@clarkson.edu
5 Email:mcgregre@clarkson.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:bonjiojp@clarkson.edu
mailto:katrakc@clarkson.edu
mailto:linh@clarkson.edu
mailto:clynch@clarkson.edu
mailto:mcgregre@clarkson.edu


Bongio,Katrak,Lin,Lynch,McGregor

A set of Horn clauses is encoded by creating propositional clauses representing
the following requirements of a tableau T : (1) The root of the tableau must be
a clause with only negative literals. (2) If a clause is in the tableau, then all its
negative literals are in the tableau. (3) If a negative literal is in the tableau, then
it must be extended by some clause. (4) If a negative literal ¬A is extended by a
clause C, then A must unify with the positive literal in C. (5) All unifications must
be consistent with each other. (6) The tableau must be finite, i.e., there is no cycle.

For connection tableaux for non-Horn clauses, literals are either extended or
complementary to an ancestor literal in its branch. For efficiency reasons, we choose
to encode a clause tableau as a DAG. So there may be many branches from the root
to a node. Therefore, we encode the fact that each literal L in the tableau must
either be extended or all paths from the root to that node must contain a literal
complementary to L. A tableau may have the same clause on different branches,
and those branches may be closed with different literals. Therefore, we may have
to add more instances of clauses to find a closed tableau. This cannot be avoided,
since rigid Horn clause satisfiability is NP -complete, but rigid non-Horn clause
satisfiability is Σp

2-complete[9]. However, because of the DAG structure, we can
often encode many instances of a clause with just one instance.

Since we encode rigid proofs, the proof of unsatisfiability of a set of clauses may
require repeating the encoding with fresh variants of each clause. However, there
are also applications which really require rigid proofs[5].

Our original ChewTPTP-SAT implementation[6] performed well on some prob-
lems, but some of the encodings created huge sets of clauses. Some parts of our
encoding represented choices made, such as which clause to extend each literal with.
But other parts of our encoding represented deterministic procedures, such as de-
ciding the consistency of unification constraints and deciding the acyclicity of the
DAG, which verifies that a particular property holds of the DAG. Furthermore, in
experimental results with Horn clauses, approximately 99% of the clauses gener-
ated were encoding the determinstic procedures, and only about 1% represented
the choices. We had an eager encoding of unification and acyclicity. We decided
the implementation would be more efficient if unification and acyclicity were en-
coded lazily and implemented these changes in ChewTPTP-SMT. It makes sense
to expresses choices involved in building the tableau using SAT, and verifcation of
unification and acyclicity using underlying theories. Therefore, we chose to encode
our problem as Satisfiability modulo Theories[12], and we replaced Minisat[8] with
Yices[7].

Yices has a theory for recursive datatypes, which can be used to represent terms.
A term can be defined by using function symbols as constructors. Each function
symbol of arity n is a constructor with n arguments. Constants are constructors
with no arguments. Predicate symbols are viewed the same as function symbols.
Variables are instances of terms. Then unification is represented as equality of terms.
We represent acyclicity using linear arithmetic. Consider a graph G = (V,E). If an
edge (u, v) exists in E, then we assert an inequality xu < xv for some real numbers
xu and xv. Then G is acyclic if and only if the set of inequalities is consistent.

In this paper, we describe our implementation of ChewTPTP-SMT, and compare
our results with ChewTPTP-SAT. We show that in the Horn encoding, ChewTPTP-

2



Bongio,Katrak,Lin,Lynch,McGregor

SMT produces far fewer clauses than ChewTPTP-SAT. The time needed to decide
the satisfiability is also drastically reduced. This is not the case for non-Horn
clauses. We explain why this is the case and give a rule of thumb for when theories
should be used for encoding.

2 Clausal Tableau

See [2] for a detailed description of first order logic and a background discussion on
the validity of a first order logic formula.

We use the following definition of tableau [10].

Definition 2.1 Clausal tableaux are trees with nodes labeled with literals and
branches labeled either open or closed. Clausal tableaux are inductively defined as
follows. Let S = {C1...Cn} be a set of clauses. If T is a tree consisting of a single
unlabeled node N then T is a clausal tableau for S. The branch consisting of only
the root node N is open. If N is a leaf node on an open branch B in the tableaux
T for S and one of the following inference rules are applied to T then the resulting
tree is a clausal tableaux for S.

(Expansion rule) Let Ck be a clause in S. Replace each variable in Ck with a
new variable not appearing in T . Suppose Lk1 ∨ ... Lki is the resulting clause.
Construct a new tableaux T ′ by adding i nodes as children of N and labeling them
Lk1 through Lki. Label each of the i branches open. T ′ is a clausal tableaux for S.

(Closure rule) Suppose Lij is the literal at N and for some predecessor node with
literal Lpq such that Lij and ¬Lpq are unifiable. Construct T ′ from T by applying
the unifier to T and labeling the branch containing Lij as closed. T ′ is a clausal
tableaux for S.

A clause which is added to the root node is called the start clause and we say that
a clause is in a tableaux if the clause was used in an application of the expansion
rule.

Definition 2.2 A clausal tableaux is tightly connected if each clause (except the
start clause) in the tableaux contains some literal which is unifiable with the negation
of its predecessor.

Connected clausal tableaux use an additional rule called extension rule.

Definition 2.3 (Extension Rule) Let N be a node in the tableau T and let Ck

be a clause in S such that there exists a literal Lik in Ck which is unifiable with the
negation of N . Apply the expansion rule with Ck and immediately apply the closure
rule with Lik.

Definition 2.4 The calculus for connection tableaux consists of the expansion rule
(for the start clause only), the closure rule, and the extension rule.

We call a tableau closed if each leaf node has been closed by an application of
the closure rule. By [11] we can require that the start clause is a negative clause
since there exists a negative clause in any minimally unsatisfiable set.

3



Bongio,Katrak,Lin,Lynch,McGregor

2.1 Rigid Unsatisfiability

The main problem in Automated Theorem Proving is to determine if a set of hy-
potheses implies a conclusion, or equivalently that a formula F is unsatisfiable. We
will assume that F is in CNF. The problem of rigid unsatisfiability of F is to de-
termine whether there exists a ground instance of F which is unsatisfiable. A rigid
tableau is a tableau in which multiple instances of a clause appearing in the tableau
are identical copies of the clause appearing in F . One result of Tableaux Theory is
the completeness and soundness of closed connection tableaux.

Theorem 2.5 There exists a closed connection (rigid) tableau for F iff F is
(rigidly) unsatisfiable[10].

3 Tableau Encoding

Our method to determine the rigid unsatisfiability of F generates a set S of propo-
sitional logic clauses modulo the theories of unification and arithmetic for F which
encodes a rigid closed connection tableau for F and tests the satisfiability of S with
a SMT solver.

We provide two encodings, the first for problems containing only Horn clauses
and the second for those containing non-Horn clauses. Given F we enumerate each
of the clauses in F and each of the literals in each clause. We denote clause i by Ci

and denote the jth literal in clause i by Lij . We denote Aij to be the atom of Lij .
Therefore Lij is either of the form Aij or ¬Aij .

3.1 Encoding for Horn Clauses

Let F be a set of first order logic formulas.
We define a set of propositional variables cm, lmn, emnq, disjoint from the symbols

in F , as follows: Define cm = T iff Cm appears in the tableau. Define lmn = T iff
Lmn is an internal node in the tableau. Define emnq = T iff Cq is an extension of
Lmn. For each pair of clauses Ci and Cj we define xi < xj = T (where xi and xj

do not exist in F ) iff there exists a path from Ci to Cj . For each pair of atoms Ai

and Aj in F , we define (Ai = Aj) = T iff Ai and Aj are the two atoms involved in
an application of the closure rule.

Below we list the set of clauses that we generate and provide their meaning.
At least one clause containing only negative literals appears in the tableau:∨

Cm is a negative clause
cm(1)

If Cm appears in the tableau and Lmn is a negative literal then Lmn is an internal
node in the tableau:

cm ⇒ lmn(2)

If Lmn is an internal node in the tableau then for some qj , Cqj is an extension
of Lmn:

lmn ⇒ (emnq1 ∨ ... ∨ emnqk
)(3)

4



Bongio,Katrak,Lin,Lynch,McGregor

where {Cq1 ...Cqk
} represent the set of all clauses whose positive literals are

unifiable with Lmn

If Cq is an extension of Lmn then Cq exists in the tableau:

emnq ⇒ cq(4)

If Cq is an extension of Lmn and Lqr is the positive literal in Cq then Amn and
Aqr are unifiable:

emnq ⇒ (Amn = Aqr)(5)

If Cq is an extension of Lmn then there is a path from Cm to Cq:

emnq ⇒ (xm < xq)(6)

The encoding is satisfiable if and only if the original set of first order Horn
clauses is rigidly unsatisfiable. We encode non-rigid unsatisfiability by continually
adding new instances of each clause, renamed apart.

3.2 Encoding for Non-Horn Clauses

For non-Horn problems we use a different set of variables and generate a different set
of clauses. Note: we say that two literals are complementary if they have opposite
signs and their atoms are unifiable.

We define the variables, disjoint from the symbols in F, sm, cmn, lmn, emnqj , oijkl

and qmnij as follows: Define sm = T iff Cm is the start clause. Define cmn = T iff
Cm appears in the tableau and Lmn is complementary to its parent. Define lmn = T

iff Lmn is a node in the tableau and is not a leaf node created by an application
of the extension rule. Define emnqj = T iff Cq is an extension of Lmn and Lqj is
the complement of Lmn. Define oijkl = T iff Lij and Lkl are a pair of literals used
in a closure but not by the extension rule. If a path to a node N contains the
complement of N , then we say that the path is closed. Define qmnij = T iff Lmn is
a leaf and Lij is a node on a path from the root node to Lmn and every path from
the root to Lij contains a complement of Lmn. For each pair of clauses Ci and Cj

we define xi < xj = T (where xi and xj do not exist in F ) iff there exists a path
from Ci to Cj . For each pair of atoms Ai and Aj in F , we define (Ai = Aj) = T iff
Ai and Aj are the two atoms involved in an application of the closure rule.

The clauses are as follows.
There exists a start clause in the tableau which only contains negative literals:∨

sm is a negative clause
sm(7)

If Cm is the start clause in the tableau then each literal Lmn of Cm is in the
tableau:

sm ⇒ lmn(8)

If Ci appears in the tableau and Lij is the complement of a literal in its parent
then all other literals of Ci are in the tableau:

cij ⇒ lik where j 6= k(9)

If Lij exists in the tableau and is not a leaf node created by an application of the
closure rule then either every branch ending at Lij is closed or there is an extension

5



Bongio,Katrak,Lin,Lynch,McGregor

of Lij :

lij ⇒ (qijij ∨ (
∨
k,l

eijkl))(10)

If Lij is extended with Ck then Ck is in the tableau and some Lkl of Ck is the
complement of Lij :

eijkl ⇒ ckl(11)

If clause Cm is an extension of Lij and literals Lij and Lml are complements
then Aij and Aml are unifiable.

eijml ⇒ (Aij = Aml)(12)

If Lij and Lkl are a pair used in a closure then they must be unifiable:

oijkl ⇒ (Aij = Akl)(13)

If Lij has the same sign as Lkl or their respective atoms are not unifiable then
they are not complements:

¬oijkl where Lij and Lkl are not unifiable(14)

If every path through Lkl to leaf Lij is closed and Ck is an extension of Lmn

then either Lij is a complement of Lmn or every path through Lmn to Lij is closed:

qijkl ⇒ (emnkp ⇒ (oijmn ∨ qijmn))(15)

If Ck is an extension of Lij then there is a path from clause Ci to clause Ck:

eijkl ⇒ (xi < xk)(16)

If Ci is the start clause then there are no inferences into any of the literals in
Ci:

si ⇒ ¬eklij(17)

If Ci is the start clause, Lmn is a leaf, and all paths that traverse Lij to Lmn are
closed, then Lij and Lmn are complementary:

si ⇒ (qmnij ⇒ omnij)(18)

We represent our tableau as a DAG, so there is some structure sharing. But
even with the structure sharing, a non-Horn clause tableau may need more than
one instance of the same clause. Rigid unsatisfiability could be determined by
continually adding identical instances of a clause. Non-Horn encoding could also be
extended to the non-rigid case in the same way as the Horn encoding.

4 Implementation and Experimental Results

We have implemented our tableau encoding in our theorem prover ChewTPTP-
SMT, which is an extension of ChewTPTP-SAT[6]. In ChewTPTP-SAT, instead
of using theories, we encoded the consistency of the unifiers and the acyclicity of
the tableau with additional propositional clauses. To encode the consistency of the
unifiers, we encoded the equations that would be created if a unification algorithm
was run. We do not know ahead of time which unifiers we will have to create, so we
encode everything that can possibly occur when the unification algorithm is run.
To encode the absence of a cycle, we encode the existence of a path from one clause

6



Bongio,Katrak,Lin,Lynch,McGregor

Table 1
ChewTPTP Times For Horn Problems

SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total

PUZ008-1.p 1 0 1.06 0.89 0.11

NLP106-1.p 2 0 1.8 1.9 0.06

NLP104-1.p 2 0 1.82 1.9 0.05

NLP105-1.p 2 0 1.83 1.89 0.06

NLP107-1.p 2 0 2.47 1.99 0.06

GRP033-3.p 1 0 2.48 1.8 0.28

NLP109-1.p 1 0 2.49 1.99 0.05

NLP113-1.p 2 0 2.51 2.01 0.06

NLP110-1.p 2 0 2.74 1.84 0.07

NLP112-1.p 2 0 2.92 1.92 0.07

NLP111-1.p 1 0 2.94 1.93 0.06

NLP108-1.p 2 0 2.94 1.94 0.07

PUZ036-1.005.p 3 0 4.33 2.92 0.03

RNG037-2.p 4 0 5.33 5.35 6.2

RNG038-2.p 4 0 5.34 3.89 19.94

RNG001-5.p 4 0 6.93 5.32 0.84

SWV015-1.p 9 0 9.64 10.08 0.08

SWV017-1.p 11 0 10.82 11.27 0.1

RNG006-2.p 7 0 11.19 7.53 6.03

to another and the fact that there is no path from a clause to itself. This requires
encoding all possible transitivity and irreflexivity axioms that may occur.

Our implementation allows the user to decide whether ChewTPTP encodes the
problem as a SAT problem or an SMT problem. If the user chooses SMT, our
implementation uses Yices to test the satisfiability of the encoding. If the user
chooses SAT, then the user can also choose whether to test the satisfiability using
Yices or Minisat, with a DIMACS encoding of SAT.

We tested our prover in all three settings on a subset of TPTP[13] problems.
Tables 1-4 provide empirical data from these tests.

SMT-Y denotes our prover run in SMT mode, SAT-Y is SAT mode using Yices,
and SAT-M is SAT mode using Minisat. For Horn clauses, we ran ChewTPTP on
all the Horn problems in the TPTP database, but for non-Horn we only had time

7



Bongio,Katrak,Lin,Lynch,McGregor

Table 2
ChewTPTP Clause and Variable Count For Horn Problems

SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct

PUZ008-1.p 52957 323 207608 216 sat

NLP106-1.p 130174 338 513774 392 unsat

NLP104-1.p 130724 344 515712 398 unsat

NLP105-1.p 130724 344 515712 398 unsat

NLP107-1.p 137380 315 542996 370 unsat

GRP033-3.p 115013 737 445065 383 sat

NLP109-1.p 137380 315 542996 370 unsat

NLP113-1.p 137897 319 544836 374 unsat

NLP110-1.p 128150 296 506951 350 unsat

NLP112-1.p 135667 287 537099 342 unsat

NLP111-1.p 135667 287 537099 342 unsat

NLP108-1.p 135667 287 537099 342 unsat

PUZ036-1.005.p 185292 45 729464 91 unsat

RNG037-2.p 221760 1524 876393 714 sat

RNG038-2.p 230063 1522 910786 718 sat

RNG001-5.p 258888 1527 1026821 725 sat

SWV015-1.p 559284 1047 2105121 532 unsat

SWV017-1.p 625119 1137 2354882 578 unsat

RNG006-2.p 432194 2058 1702459 925 sat

to run it through the GRP problems. We report all problems that both provers
solved within five minutes but SAT-M took greater than one second. We believe
the problems in these tables are representative of the overall results. Columns in the
table show the running time of each method, the clause generation time rounded
off to the nearest second, the number of clauses generated, and the number of
variables generated for each method. We also show whether or not the problem is
rigidly satisfiable. For these experiments, we only tested rigid satisfiability with one
instance of each clause.

We wanted to see if working modulo theories would improve the performance of
ChewTPTP. In the Horn case the running time was reduced significantly, except for
a small percentage of exceptions. In the non-Horn case, working modulo theories
often increased the running time. Generally, Yices was faster than Minisat on SAT

8



Bongio,Katrak,Lin,Lynch,McGregor

Table 3
ChewTPTP Times For Non-Horn Problems

SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total

ANA025-2.p 1 0 1.02 1.04 2.43

COL121-2.p 0 1 1.02 0.92 1.41

ANA004-4.p 1 0 1.33 1.87 2.77

GRA001-1.p 2 2 1.92 1.74 4.08

ANA029-2.p 2 2 2.05 2.08 4.68

ANA005-2.p 2 1 2.38 2.31 4.72

ANA004-2.p 2 1 2.39 2.3 5.06

ANA003-2.p 3 1 2.96 2.81 5.53

GRP123-1.003.p 3 2 3.41 3.76 18.11

ANA001-1.p 4 2 4 3.84 7.94

GRP123-2.003.p 4 3 5.55 5.37 17.66

ANA002-2.p 5 3 5.73 5.34 10.56

ANA002-1.p 5 3 6.17 5.67 11.84

GRP124-2.004.p 9 6 10.51 11.4 43.91

GRP033-3.p 15 6 20.11 15.69 23.18

GRP123-3.003.p 28 20 30.63 30.73 80.84

ALG002-1.p 1 1 43.51 64.92 75.33

ANA004-5.p 2 1 47.25 21.5 83.54

GRP124-3.004.p 46 31 88.23 83.83 171

COM003-2.p 82 49 88.72 84.54 168.1

problems without theories.
We believe we have an explanation for our results. In the Horn problems the

number of clauses is reduced by an order of magnitude, whereas in the non-Horn
problems the number of clauses is not reduced by much. This implies that working
modulo theories is only useful when the clauses size is reduced significantly.

In the Horn encoding, everything can be encoded in O(n2) except for the encod-
ing of unification and acyclicity, which require O(n3) space. When we remove the
clauses used to represent unification and acyclicity, the number of clauses is now
O(n2). However, for the encoding of non-Horn clauses, we must encode the fact of
a leaf node having a complementary literal as an ancestor. This encoding is O(n3).
We do not know how to encode this using the theories of Yices, so we have kept

9



Bongio,Katrak,Lin,Lynch,McGregor

Table 4
ChewTPTP Clause and Variable Count For Non-Horn Problems

SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct

ANA025-2.p 41129 36020 2655 2286 sat

COL121-2.p 47725 20335 2322 1538 sat

ANA004-4.p 44142 36844 3160 2631 sat

GRA001-1.p 64222 60849 3292 3161 sat

ANA029-2.p 79860 66884 4107 3388 sat

ANA005-2.p 93806 68206 4907 3802 unsat

ANA004-2.p 93806 68206 4907 3802 unsat

ANA003-2.p 114945 78930 5654 4243 unsat

GRP123-1.003.p 111866 94335 4589 3596 unsat

ANA001-1.p 154246 113596 6680 5185 unsat

GRP123-2.003.p 180783 154243 6723 5450 unsat

ANA002-2.p 226149 151313 7457 5436 unsat

ANA002-1.p 229871 151313 7544 5437 unsat

GRP124-2.004.p 339070 283967 10854 8953 unsat

GRP033-3.p 699160 301901 15989 8961 sat

GRP123-3.003.p 1003831 934044 17763 15377 unsat

ALG002-1.p 54559 32731 3524 2460 unsat

ANA004-5.p 101166 44953 4981 3196 unsat

GRP124-3.004.p 1596801 1468732 25314 21981 unsat

COM003-2.p 2920669 2365922 46818 36051 sat

the propositional encoding. Therefore, when we remove the encoding of unification
and acyclicity, the entire coding of the problem is still O(n3). We conjecture a good
rule of thumb for deciding when it is useful to encode properties using theories. We
conjecture that if the number of clause can be reduced by a factor of n, then the
coding is useful, but if the asymptotic complexity remains the same, then it is not
a good idea.

5 Conclusion

We have given an application of SMT to theorem proving in first order logic by en-
coding the existence of a rigid connection tableau in SMT. We have implemented the

10



Bongio,Katrak,Lin,Lynch,McGregor

SMT encoding in our theorem prover ChewTPTP-SMT. We compared it with our
initial version of ChewTPTP-SAT, where a rigid connection tableau was encoded
in SAT.

Compared to our encoding in SAT, the encoding in SMT is more natural and
more efficient. As part of our encoding, we need to encode the solving of unifica-
tion problems and the acyclicity of the tableau. In SAT, it was necessary to add
cubically many clauses to encode the solving of unification. In addition, it was
necessary to add cubically many clauses to encode the acyclicity of the tableau.
However, when encoding this information in SMT, there was no need to encode the
solving of unification, since this was accomplished directly with the Yices recursive
datatype theory. The number of unification clauses was reduced from a cubic to a
quadratic number. Similarly for acyclicity of tableau, we did not need to encode
the transitivity and irreflexivity of the path relation. We only needed to express
edges in the tableau as inequalities. The number of clauses to represent acyclicity
also dropped from a cubic number to a quadratic number.

In the Horn encoding, all the other information in the tableau can also be en-
coded with a quadratic number of clauses. Therefore the entire encoding of the
existence of a tableau dropped from a cubic number of clauses in SAT to a quadratic
number in SMT. This drastically reduced the number of clauses, and simultaneously
decreased the time needed to decide the satisfiability of the clauses. There was only
a small reduction in number of clauses for non-Horn clauses, because we still need
to encode the fact that all paths in the tableau can be closed. Therefore the entire
encoding is still cubic, and the running time was actually worse. We conjecture a
rule of thumb saying that it is worthwhile to use theories if the number of clauses
is reduced by a factor of n, but not worthwhile if the asymptotic number remains
the same.

For future work, we hope to be able to use SMT to further reduce the repre-
sentation for non-Horn clauses, ideally cutting it down to a quadratic number of
clauses. It would be possible to define a theory to do this directly, but we have
not yet figured out how to do it with the existing theories in Yices. In addition,
in order to prove the general first order problem we also need to find a good way
to decide exactly which clauses should be copied. We would like a method to de-
cide satisfiability from rigid satisfiability. It would be useful to have an encoding
of rigid clauses modulo a non-rigid theory, as discussed in [5]. This way, we could
immediately identify some clauses as non-rigid, and work modulo those clauses.

This paper shows the usefulness of SMT to theorem proving in first order logic.
We suspect there are other logics which could also be solved efficiently using SMT.

Acknowledgement

We would like to thank to Leonardo de Moura for his explanation of how to express
unification problems in Yices using recursive datatypes.

11



Bongio,Katrak,Lin,Lynch,McGregor

References

[1] Andrews P. B. [1981], Theorem Proving via General Matings, Journal of the Association for Computing
Machinery, Vol. 28, No. 2, pp.193-214

[2] Bell J.L. and Slomson A.B. [1969], Models and Ultraproducts, An Introduction, Dover

[3] Chang, C. and Lee, C.R. [1973], Symbolic Logic and Mechanical Theorem Proving. Academic Press
New York and London.

[4] Davis M., Logemann D. and Loveland D. [1962], A Machine Program For Theorem Proving,
Communications of the ACM, Volume 5, Issue 7, pp. 394-397

[5] Delaune S., Lin H. and Lynch C. [2007], Protocol Verification Via Rigid/Flexible Resolution, submitted

[6] Deshane T., Hu W., Jablonski P., Lin H., Lynch C. and McGregor R.E. [2007], CADE, Lecture Notes
in Computer Science, Springer, Vol. 4603, pp. 476-491

[7] Dutertre B. and deMoura L., Yices, http://yices.csl.sri.com

[8] Eén N. and Sörensson N. [2003], An Extensible Sat-Solver, In SAT, pp. 502-518

[9] Goubault J. [1994], The Complexity of Resource-Bounded First-Order Classical Logic, Lecture Notes
In Computer Science, Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer
Science, Vol. 775, Springer-Verlag, pp. 59-70

[10] Hähnle R. [2001], Tableaux and Related Methods, in A. Robinson and A. Voronkov, eds, ’Handbook
of Automated Reasoning’, Vol. 1, Elsevier Science, chapter 3, pp. 101-177

[11] Letz R. and Gernot S. [2001], Model Elimination and Connection Tableau Procedures, in A. Robinson
and A. Voronkov, eds, ’Handbook of Automated Reasoning’, Vol. 2, Elsevier Science, chapter 28, pp.
2015-2113

[12] Nieuwenhuis R., Oliveras A. and Tinelli C. [2006], Solving SAT and SAT Modulo Theories: From
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T), Journal of the ACM, 53(6),
937-977, November 2006.

[13] Sutcliffe G. and Suttner C.B. [1998], The TPTP Problem Library: CNF Release v1.2.1, Journal of
Automated Reasoning, Vol. 21, No. 2, pp. 177-203

12


	Introduction
	Clausal Tableau
	Rigid Unsatisfiability

	Tableau Encoding
	Encoding for Horn Clauses
	Encoding for Non-Horn Clauses

	Implementation and Experimental Results
	Conclusion
	Acknowledgement 
	References

