
A	First	Graph	Library	for	Babylon.JS	
Final	Report	

	
John	Moran	

jmoran@eagles.bridgewater.edu	
	

R.	Eric	McGregor,	Ph.D.	
rmcgregor@bridgewater.edu	

	
	
Introduction	
	
An	interesting	object	that	can	be	displayed	in	the	browser	is	the	graph.		Here,	graphs	are	sets	of	
nodes	that	are	connected	via	edges.		Each	node	represents	an	entity	and	an	edge	between	two	
entities,	often	depicted	as	a	line,	represents	the	existence	of	a	binary	relationship	between	the	
two	entities.	
	

	
Figure	1:		A	collection	of	graphs	created	using	VivaGraph	

	
These	2D	graphs	are	very	useful	models	when	the	edges	don't	overlap;	however,	when	they	do,	
understanding	the	relationships	between	entities	becomes	more	difficult	as	shown	in	Figure	2.			
	



	
Figure	2:	A	graph	with	93	nodes	and	692	edges.	

	
	
Graphs	can	be	dynamically	created	and	viewed	in	a	browser	using	the	JavaScript	programming	
language.		Here,	the	web	developer	can	code	an	application	to	allow	a	user	to	pan	left	and	right	
and	zoom	in	and	out	to	focus	on	different	areas	of	the	graph.		This	permits	very	large	models	
with	hundreds	of	nodes	and	hundreds	of	edges	to	be	displayed.	Some	of	the	JavaScript	libraries	
that	allow	a	programmer	to	create	graphs	dynamically	in	a	2D	environment	include	D3.js	and	
VivaGraph	[1,2].	One	drawback	however	is	that	the	graphs	are	flat	and	stationary.	
	
Recently,	technology	has	been	developed	that	allows	the	rendering	of	3D	scenes	in	the	web	
browser.			Prior	to	this	advancement,	3D	environments	were	restricted	to	gaming	consoles	and	
high	performance	computers.		Today	there	are	two	JavaScript	frameworks,	Three.js	and	
BabylonJS	[3.4]	that	allow	information	to	be	displayed	in	the	browser	in	3D.		Here,	a	3D	scene	is	
created	that	can	include	3D	objects	with	textures,	lighting,	shadows,	particle	systems	that	
simulate	fire	and	rain,	cameras,	and	physics	effects	such	as	gravity.		Users,	with	their	arrow	
keys,	can	navigate	the	space	and	with	the	click	of	a	mouse	can	rotate	and	interact	with	objects	
in	that	space.	
	
In	this	project	we	have	created	a	JavaScript	graph	library	called	YAGL	(pronouned	'yæ	gəl)	for	
the	Babylon.js	3D	framework.	This	library	allows	programmers	to	easily	create	and	manipulate	
3-dimensional	graphs	in	a	3D	Babylon	scene	and	perform	a	few	algorithms	on	the	graph.	
	
	



YAGL	Files	
	
In	the	YAGL	library	a	graph	is	specified	in	a	YAGL	object	or	file.	A	YAGL	object	or	file	is	simply	a	
JSON	object	or	file	that	defines	the	vertices	(a.k.a.	nodes)	and	edges	of	a	graph.		An	example	is	
give	below.	
	
{	
				"description":	"example",	
				"graphicsFramework":"Babylonjs",	
				"layout":	"Force	Directed",	
				"vertices":[	
								{"id":1,	"position":[0,0,0],	
												"mesh":{	
																"meshName":"Suzanne",	
																"rootUrl":"http://demo.yagljs.com/assets/",	
																"sceneFilename":"suzanne.babylon"	
												}	
								},	
								{"id":2,	"position":[0,0,5]},	
								{"id":3,	"position":[5,0,5]},	
								{"id":4,	"position":[5,0,0],	
												"mesh":	{	
																"meshName":"Cube",	
																"rootUrl":"http://demo.yagljs.com/assets/",	
																"sceneFilename":"cube.babylon"	
												}	
								},	
								{"id":5,	"position":[0,5,0]}	
				],	
				"edges":[	
								{"id":1,	"v1":1,	"v2":2},	
								{"id":2,	"v1":2,	"v2":3},	
								{"id":3,	"v1":3,	"v2":4},	
								{"id":4,	"v1":4,	"v2":1}	
				]	
}	
	
The	"description",	"graphicsFramework"	and	"layout"	properties	are	optional	at	this	time.		By	
default	the	library	supports	only	the	BabylonJS	graphics	framework	and	an	automatic	force-
directed	layout.		The	"vertexMesh"	property	defines	the	default	mesh	to	be	used	when	a	vertex	
is	specified	without	a	mesh	property.		Both	the	"vertexMesh"	property	and	the	"mesh"	
property	specify	a	mesh	name	in	a	Babylon	scene	file.		These	meshes	are	imported	using	
Babylon's	AssetsManager.addMeshTask()	method.			
	



The	"vertices"	property	holds	an	array	of	vertex	objects,	each	having	"id",	"position"	and	
optional	"data"	and	"mesh"	properties.		The	"id"	is	an	integer	that	can	be	referenced	when	
specifying	an	edge.		The	"position"	property	specifies	an	x,	y	and	z	coordinate	for	the	vertex	in	
an	array.		If	a	position	is	not	specified	for	a	vertex	the	LayoutManager	will	assign	the	vertex	a	
position.		The	"data"	property	can	be	used	to	store	information	associated	with	a	particular	
vertex	which	can	be	set	and	access	by	the	web	application.	
	
Following	the	"vertices"	property	is	the	"edges"	property	that	consists	of	an	array	of	edge	
objects.		Each	edge	object	contains	"id",	"v1"	and	"v2"	properties.		The	"id"	property	is	an	
integer	and	the	"v1"	and	"v2"	properties	refer	to	vertex	ids.	
	
The	YAGL	Classes	
	
The	YAGL	library	has	4	main	classes:		GraphBuilder,	Graph,	GraphicsManager,	and	
LayoutManager.			The	GraphBuilder	class	is	responsible	for	parsing	the	YAGL	object	or	file	and	
for	creating	and	building	a	model	of	the	graph	via	the	Graph	class.		A	Graph	object	holds	the	
model	of	the	graph	and	additional	data	that	needs	to	be	stored	in	the	nodes	of	the	graph.		
When	a	Graph	object	is	first	created	by	the	GraphBuilder,	the	Graph	constructor	creates	a	
GraphicsManager	object.		Each	time	a	vertex	or	edge	is	added	to	the	model	by	the	
GraphBuilder	it	calls	a	Graph	method,	which	calls	upon	a	GraphicsManager	method	to	return	a	
3D	Mesh	object.		This	mesh	object	is	then	stored	in	the	graph	model	and	displayed	in	the	scene.	
When	initialized,	the	GraphicsManager	creates	a	LayoutManager	object	that,	when	necessary,	
helps	find	a	reasonable	position	for	a	mesh	in	a	scene	using	a	force-directed	algorithm	[5]	if	a	
position	is	not	specified	explicitly.	
	
Creating	a	YAGL	Graph	
	
To	create	a	graph	from	a	YAGL	file	one	simply	creates	a	GraphBuilder	object	(passing	to	the	
constructor	the	Babylon	scene	object)	and	then	calls	buildUsingJSONFIle()	(passing	it	the	URL	to	
the	file)	as	show	below.	
	

var	builder	=	new	YAGL.GraphBuilder(scene);	
builder.buildUsingJSONFile(url_of_yagl_file);	

	
Similarly,	you	can	create	a	YAGL	graph	from	a	YAGL	object.	
	

var	builder	=	new	YAGL.GraphBuilder(scene);	
builder.buildUsingJSONObj(your_object);	
	

You	can	also	incrementally	build	a	graph	using	the	GraphBuilder's	addVertices()	and	addEdges()	
methods.	
	
	
	



YAGL	Algorithms	
	
Once	a	graph	is	constructed	a	number	of	algorithms	can	be	performed	on	the	graph.		Below	are	
brief	descriptions	of	the	algorithmic	methods	in	the	Graph	class.	
	

• isConnected():		This	method	returns	true	if	every	pair	of	vertices	are	connected	by	a	
path	in	the	graph.		This	is	implemented	via	a	Union-Find	algorithm.			

	
• BFSearch(rootVid,	searchVid):		This	method	searches	a	graph	using	a	Breadth-First	

search	starting	at	rootVid	and	continues	until	it	finds	searchVid	in	which	case	it	returns	
the	vertex,	or	it	has	traversed	all	of	the	nodes	connected	to	rootVid	in	which	case	it	
returns	null.	

	
• getPath(vid1,	vid2):	This	method	returns	an	array	containing	a	shortest	path	from	vid1	

to	vid2.	
	
Demonstration	Website	
	
We've	also	created	a	few	web	applications	that	demonstrate	some	of	the	uses	of	YAGL.		The	
first	basic	Scene	application	(http://demo.yagljs.com/basic/basicScene.html)	displays	a	vertical	
row	of	buttons	on	the	right	and	a	dialog	box	on	the	left.		The	graph	is	displayed	in	the	center	of	
the	page.		The	buttons	allow	the	user	to	build	a	graph	(either	randomly	or	from	predefined	
files),	adjust	the	build	speed,	toggle	on	and	off	graph	information	in	the	dialog	box,	freeze	the	
scene	camera,	compute	the	shortest	path	between	two	nodes	and	color	the	different	
components	in	the	graph	with	different	colors.			
	

	
Figure	3:		A	randomly	generated	YAGL	graph	with	3	components	



	
The	second	demonstration	web	application	(http://demo.yagljs.com/fb/facebookScene.html)	
requires	the	user	to	have	a	Facebook	account	and	to	log	into	their	account.	The	app	uses	the	
Facebook	Graph	API	to	create	a	graph	(with	cube	vertices)	of	the	user's	friends	who	have	visited	
the	demonstration	page.		Each	node	of	the	graph	is	clickable	and	when	clicked	displays	a	link	to	
the	friend's	Facebook	timeline.	
	

	
Figure	4:	A	YAGL	graph	created	using	a	user's	Facebook	graph	

	
Source	Code	
	
The	source	code	for	YAGL	and	the	demonstration	applications	can	be	found	at	
https://github.com/erimcg/YAGL.	We	have	submitted	a	request	for	the	source	code	to	be	open	
sourced	and	are	awaiting	approval	from	the	college	administration.	
	
Future	Work	
	
In	the	future	we'd	like	to	add	subclasses	of	the	Graph	class	such	as	Tree,	DirectedGraph,	
WeightedGraph	and	NetworkFlow.		Along	with	these	we'd	like	to	implement	more	algorithms	
like	HAS	CYCLE,	MINIMUM	SPANNING	TREE,	and	MAXIMUM	FLOW.		We'd	also	like	to	develop	a	
demonstration	web	application	that	allows	a	user	to	create	a	graph	using	a	mouse	and	a	pallet	
of	options	(like	a	painter)	and	add	the	ability	for	users	to	export	graphs	to	.yagl	files.	

	
	
	
	
	



Bibliography	
	

1. Bostock,	Mike	(2016)	D3.js	[Source	code].		Available	at	https://github.com/mbostock/d3	
(Accessed	April	16,	2016)	

2. Kashcha,	Andrei	(2016)	VivaGraphJS	[Source	code].	Available	at	
https://github.com/anvaka/VivaGraphJS	(Accessed	April	16,	2016)	

3. Cabello,	Ricardo	(2016)	Three.js	[Source	code].	Available	at	
https://github.com/mrdoob/three.js/	(Accessed	April	16,	2016)	

4. Catuhe,	David	(2016)	BabylonJS	[Source	code].	Available	at	
https://github.com/BabylonJS	(Accessed	April	16,	2016)	

5. Hotson,	Dennis	(2013)	Springy	[Source	code].	Available	at	
https://github.com/dhotson/springy	(Accessed	September	18,	2016)	

	


