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Introduction	

Historically,	humans	have	identified	other	humans	by	observing	one	another’s	
physiological	and	behavioral	biometric	traits.		Examples	of	these	traits	include	facial	structure,	
body	size	and	shape,	skin	pigmentation,	hair	color,	and	gait.		Regardless	of	how	reliable	this	
process	is	for	humans	to	identify	other	humans,	this	process	can	be	rendered	less	successful	by	
a	variety	of	countering	activities,	such	as	applying	disguises.		However,	there	are	several	
biometric	traits	common	among	humans	that	are	not	easily	disguisable.		In	[1-10],	the	authors	
analyze	the	biometric	trait	that	is	present	in	every	living	human	being	and	yet	difficult	to	mimic	
or	disguise:	the	human	heartbeat.		

In	[1],	the	authors	collected	three	types	of	data	from	36	subjects	via	an	experiment.		The	
data	included	phonocardiogram	(PCG)	data,	carotid	pulse	(CP)	data,	and	electrocardiogram	
(ECG)	data.	The	carotid	data,	the	electrocardiogram,	and	the	phonocardiogram	were	collected	
by	a	Laser	Doppler	Vibrometer,	electrodes	placed	on	the	subjects’	chests,	and	digital	
stethoscope,	respectively.		In	addition,	they	developed	the	Thoracic	Identification	System	
(THIS),	which	performs	biometric	identification	using	the	three	previously	stated	signal	types.	
Prior	to	this	research,	the	Thoracic	Identification	System	had	a	satisfactory	accuracy	when	
trained	on	a	set	of	ECG	signals	and	tested	against	ECG	signals	collected	eight	minutes	later.		But	
the	identification	rate	when	using	carotid	pulse	data	stood	at	about	61%.		A	large	portion	of	this	
error	was	believed	to	be	due	to	the	inability	of	the	classifier	algorithm	to	properly	and	
accurately	account	for	the	changes	in	speed,	amplitude,	and	structure	in	the	heartbeat	that	
occur	between	training	and	testing	data.	

To	mitigate	these	differences,	Chen	[9]	experimented	with	Dynamic	Time	Warping	and	
Optimal	Subsequence	Bijection.		Chen’s	research,	however,	showed	that	implementation	of	
both	of	these	methods,	whether	on	their	own	or	combined	together,	showed	no	statistically	
significant	improvement	in	the	accuracy	of	their	system.			

The	problem	that	both	Dynamic	Time	Warping	and	Optimal	Subsequence	Bijection	
sought	to	solve	was	a	desynchronization	problem	between	heartbeats.		Ideally,	in	order	to	
compare	two	heartbeats,	the	signals	would	be	of	the	same	length	with	their	distinguishing	
features	being	lined	up	at	the	same	discrete	sample/time	placement	in	the	signal.		However,	
this	is	not	usually	true,	even	for	different	heartbeats	of	the	same	person.		DTW	and	OSB	are	
both	algorithms	that	can	be	implemented	in	order	to	match	the	key	features	of	one	heartbeat	
to	the	respective	matching	features	of	another.		But	in	[9]	,	the	authors	reasoned	that	these	
algorithms	did	not	have	statistically	insignificant	increases	in	accuracy	because	they	altered	the	
original	signals	too	much	and	removed	critical	data	from	the	signal,	thus	removing	any	accuracy	
improvement	the	system	might	have	gained	from	the	now	easier	to	compare	signals.		Instead,	
the	authors	suggest	detecting	both	the	primary	and	secondary	peaks	of	each	heartbeat	and	
then	using	the	primary	and	secondary	peaks	of	each	signal	as	the	key	features	for	the	alignment	
process.		

In	this	work	we	implement	a	dual-peak	detection	algorithm	and	create	a	new	feature	
selection	algorithm	following	[9].				
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The	Peak	Detection	Algorithm	

	 The	new	peak	detection	algorithm	is	given	below.	

1. Detect_Primary_And_Secondary_Peaks(signal)	
a. Primary_Peaks	=	Detect_Primary_Peaks(signal)	

i. Iterate	through	a	range	of	window	sizes,	500	to	900	with	an	increment	of	
50,	to	find	an	optimal	window	size	that	minimizes	the	standard	deviation	
between	the	distances	of	each	detected	maximum	for	each	window.	

ii. Once	the	ideal	window	size	is	determined,	detect	the	peaks	by	finding	
the	maximums	in	each	window.	

b. Secondary_Peaks	=	Detect_Secondary_Peaks(signal,	Primary_Peaks)	
i. Compute	the	primary	peak	width	for	each	primary	peak	to	the	left	and	to	

the	right	of	each	peak.	
1. Iterate	to	the	left	and	to	the	right	of	each	peak	maximum	by	steps	

of	50	until	there	are	two	consecutive	windows	that	are	on	
average,	not	increasing	(for	the	left	peak	width)	or	decreasing	(for	
the	right	peak	width).			

ii. Partition	the	signal	into	segments	that	are	the	primary	peak	and	that	are	
not	the	primary	peak.	

iii. For	each	non-primary	peak	segment,	find	the	local	maxima	and	identify	
this	as	a	secondary	peak	for	the	signal.	

c. Return	the	locations	of	the	primary	and	secondary	peaks.		

Methodology	of	THIS	

In	order	to	understand	the	need	for	and	application	of	our	algorithm	that	we	
implemented,	one	must	first	understand	the	THIS	system	and	its	algorithms.		The	program,	
which	is	written	in	Matlab,	reads	in	the	signal	data	from	preexisting	files	based	on	the	options	
that	the	user	has	selected.		These	options	include	which	data	sets	to	train	the	classifier	on	and	
test	the	classifier	against,	as	well	as	the	kind	of	signal,	the	rate	of	down	sampling,	and	the	
format	of	the	data	file.		After	these	choices	are	made	by	the	user,	the	data	files	are	read	into	
the	THIS	program.		These	signals,	however,	come	into	the	program	as	a	single	1	to	4	minute	
continuous	signal,	which	could	contain	an	average	of	anywhere	from	50	to	300	heartbeats,	
depending	on	the	heart	rate	of	the	subject	at	that	point	of	recording.		

The	software	then	partitions	the	signal	into	individual	heartbeats	so	that	they	can	be	
properly	analyzed	by	the	classifier.		The	software	uses	a	sliding	window	to	mark	the	peak	
maximum	for	each	window	for	a	given	window	size	chosen	by	the	user	through	the	GUI.		At	this	
point,	the	THIS	program	has	a	list	of	maximum	peaks	for	the	signal	which	coincide	with	the	
primary	peaks	of	heartbeats.	

Once	the	software	has	this	series	of	maximum	peaks,	it	takes	a	certain	number	of	
samples	both	before	and	after	the	primary	peak	for	each	window.		Each	window’s	set	of	
samples	is	a	single	heartbeat	for	that	subject.		The	parts	of	the	signal	that	were	not	included	in	
these	heartbeats	were	discarded.					
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After	the	heartbeats	are	segmented	for	each	subject,	spectrograms	were	created	for	
each	heartbeat.		A	spectrogram	is	a	visual	representation	of	the	frequencies	in	a	signal;	in	this	
context,	the	spectrograms	are	visual	representations	of	the	heartbeats.		In	order	to	create	a	
spectrogram	from	a	given	heartbeat,	a	discrete	Fourier	transform	is	performed	on	the	signal,	
which	partitions	the	signal	into	a	number	of	time-variant	bins,	each	of	which	is	given	an	
assigned	value	based	on	the	frequencies	of	the	signal	in	that	interval	of	time.			

After	the	spectrograms	are	created,	two	types	of	average,	or	mean	spectrograms,	are	
created.		For	each	subject,	a	subject	nominal	spectrogram	is	created	such	that	the	spectrogram	
is	the	average	of	all	of	their	spectrograms.		For	the	population	(all	of	the	subjects),	a	single	
overall	nominal	spectrogram	is	created	such	that	the	spectrogram	is	the	average	of	all	of	the	
subject’s	nominal	spectrograms.				

Among	the	user	inputs	into	the	THIS	program	are	the	number	of	spectrograms	for	both	
training	and	testing	that	are	used	in	order	to	identify	an	individual.		For	each	subject,	the	THIS	
program	selects	the	n	most	similar	spectrograms	to	the	subject’s	nominal	spectrogram,	where	n	
is	the	given	parameter	for	number	of	spectrograms	for	training.		Also	for	each	subject,	the	THIS	
program	selects	the	m	most	similar	spectrograms	to	the	subject’s	nominal	spectrograms,	where	
m	is	the	given	parameter	for	number	of	spectrograms	for	testing.		These	are	defined	as	the	
subject’s	maximum	likeliness	spectrograms	for	training	and	testing,	respectively.			

Each	of	these	spectrograms,	of	course,	still	have	a	one	to	one	relation	to	their	respective	
heartbeat	signal	from	which	they	were	created.		These	can	be	plotted	to	visualize	the	selection	
of	the	spectrograms	(and	by	extension,	heartbeats)	that	most	accurately	represent	the	average	
of	the	individual’s	heartbeats	as	shown	in	figure	1:		
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Figure	1	-	Above	is	a	screenshot	of	three	heartbeats	and	their	respective	derived	spectrograms	from	a	particular	testing	subject.		

Also	displayed	is	the	nominal	spectrogram	for	that	subject.	

From	each	subject’s	respective	maximum	likeliness	spectrograms,	Symmetric	Relative	
Entropy	Scores	are	calculated	for	each	bin.		A	Symmetric	Relative	Entropy	Score	has	two	equally	
weighted	parts.		In	order	to	uniquely	identify	each	subject	by	their	spectrogram	information,	
we	wish	to	discard	the	parts	of	their	spectrogram	(bins)	that	are	common	across	the	
population,	but	keep	the	bins	that	are	common	across	each	subject.		In	other	words,	we	wish	to	
create	a	scoring	system	which	gives	more	weight	to	bins	that	have	high	variance	compared	to	
the	population	nominal	model	than	bins	that	have	low	variance	compared	to	the	population	
nominal	model,	as	well	as	weigh	bins	that	have	low	variance	compared	to	the	subject’s	nominal	
model	higher	than	bins	that	have	high	variance	compared	to	the	subject’s	nominal	model.			

	 Once	the	Symmetric	Relative	Entropy	Scores	are	calculated	for	each	bin,	the	software	
creates	a	feature	set	consisting	of	a	matrix	containing	the	k	highest	scoring	bins	for	each	
subject,	where	k	is	another	parameter	specified	by	the	user.		At	this	point,	the	classifier,	
whether	testing	or	training,	has	n	feature	sets	to	train	on	and	m	feature	sets	to	test	with	for	
each	subject/signal	that	most	accurately	identify	that	subject	uniquely.	

	 Once	both	the	training	and	testing	features	are	calculated,	the	next	step	is	for	the	
classifier	to	actually	classify.		With	the	aforementioned	feature	sets	for	each	subject,	the	



Dylan	Tokotch	 	 6		

	
	

classifier	creates	a	model	for	both	testing	and	training.		It	then	compares	these	models	
probabilistically	and	computes	a	probability	for	each	testing	signal	to	belong	to	each	training	
subject.		It	then	checks	its	own	accuracy	by	comparing	its	most	likely	candidates	to	the	actual	
source	of	each	feature	set	and	outputs	its	own	accuracy,	for	the	purposes	of	data	collection	and	
improvement.			

Changes	to	Methodology	of	THIS	

	 Firstly,	before	we	began	the	changes	that	would	become	the	dual	peak	detection	
algorithm	in	the	software,	we	attempted	many	implementations	of	algorithms	that	did	not	
improve	the	accuracy	of	the	software.		As	described	previously,	the	algorithms	of	Optimal	
Subsequence	Bijection	and	Dynamic	Time	Warping	were	thought	to	be	solutions	for	solving	the	
problem	of	desynchronized	key	features	of	heartbeats	that	was	believed	to	be	the	source	of	the	
software’s	inaccuracy.	

	
Figure	2	–	Above	are	three	heartbeat	segments	taken	from	the	same	subject.			

Notice	above	that	there	is	a	two-fold	problem	here.		Firstly,	since	the	samples	are	
determined	solely	by	their	relation	to	the	primary	peak	key	feature,	only	the	primary	peak	key	
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feature	is	aligned	between	heartbeats.		In	this	example,	primary	peaks	will	always	occur	at	
position	201	across	all	segments	across	all	subjects.		However,	this	means	that	the	secondary	
peak	is	not	bound	to	any	particular	point.		This	means	that	the	secondary	peak	locations	for	
multiple	heartbeat	segments	of	the	same	subject	do	not	necessarily	have	to	match.		In	addition	
to	the	variability	of	the	location	of	secondary	peaks,	the	figure	above	also	shows	an	uncommon	
but	problematic	issue:	the	secondary	peak	can	sometimes	not	even	exist	in	the	heartbeat	
segment	because	it	is	too	far	from	the	primary	peak	to	be	sampled.		Since	spectrogram	bins	are	
created	from	the	data	present	at	that	location,	this	presents	an	information	loss	problem.			

Initial	delves	into	the	implementation	of	OSB	and	DTW	proved	difficult,	however,	and	
further	research	into	similar	applications	revealed	that	they	did	not	statistically	significantly	
improve	accuracy.		It	became	evident	that	DTW	and	OSB	both	remove	too	much	of	the	
information	in	LDV	signals	because	of	excessive	changes	to	the	original	signal	in	order	to	make	
the	key	features	of	the	signal	match.			

It	was	determined,	however,	that	a	less	extreme	variation	of	the	signal	key	feature	
matching	could	likely	be	used	without	removing	important	information.		And	so,	after	an	
extensive	amount	of	research,	consideration,	and	deliberation,	the	algorithm	that	we	decided	
to	implement	was	a	dual	peak	detection	algorithm	and	segmentation	algorithm.	The	purpose	of	
the	dual	peak	detection	algorithm	is	to	align	all	primary	and	secondary	peaks;	the	purpose	of	
the	new	segmentation	algorithm	is	to	concatenate	segments	surrounding	the	primary	and	
secondary	peaks	of	each	heartbeat	during	the	data	selection	process.					Our	solution	to	the	
information	loss	problem	was	to	create	a	hybrid	concatenated	signal	that	contained	a	segment	
around	the	primary	peak	and	a	segment	around	the	secondary	peak	of	each	heartbeat.		This	
effectively	aligned	the	locations	of	the	most	information	critical	areas,	that	is,	the	primary	and	
secondary	peaks	of	each	heartbeat,	without	skewing	any	of	the	other	data.			

	 We	began	by	implementing	a	dual	peak	detection	algorithm	by	Jose	Corona	and	Dr.	
Verne	Leininger.		Firstly,	we	implemented	their	variation	of	primary	peak	detection.		The	
advantage	of	their	primary	peak	detection	over	our	previous	implementation	was	that,	given	a	
signal,	the	user	wasn’t	required	to	input	a	window	size	in	order	to	detect	peaks.		A	poorly	
chosen	user’s	window	size	produces	many	false	positives	and	false	negatives.		Secondly,	after	
implementing	their	algorithm	for	primary	peak	detection,	we	wrote	and	implemented	another	
method	for	secondary	peak	detection	based	on	conversations	with	Dr.	Leininger.			
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Figure	3	-	Above	is	the	prior	singular	peak	detection	algorithm	with	fitted	window	size	parameter.		Primary	peaks	are	shown	in	
green.	

	
Figure	4	-	Above	is	dual	peak	detection	algorithm	on	same	signal	with	primary	peaks	in	green	and	secondary	peaks	in	blue	

Next,	having	implemented	primary	and	secondary	peak	detection,	we	implemented	the	
necessary	changes	to	the	software	so	that	it	would	be	able	to	segment	a	region	around	the	
secondary	peaks	of	each	heartbeat	as	well	as	around	the	primary	peaks	and	concatenate	them	
together	to	make	a	spliced	signal	before	spectrogram	creation.				

	
Figure	5	-	Pictured	above	is	the	original	implementation	of	segment	selection.		Parameters	include	200	samples	before	and	500	

samples	after	the	primary	peak,	which	consequentially	places	our	primary	peak	at	the	201st	sample.			
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Figure	6	-	Pictured	above	is	the	same	heartbeat	with	new	segmentation.		Parameters	include	240	samples	taken	before	the	
primary	peak	and	220	after;	it	also	contains	45	samples	before	the	secondary	peak	and	30	after.		The	splice	occurs	at	sample	

462.		The	primary	and	secondary	peak	locations	are	located	at	the	241st	and	506th	samples,	respectively.	

Of	course,	the	benefit	of	this	implementation	really	shines	when	comparing	heartbeat	
segments	of	different	subjects:	

	
Figure	7	–	Different	subjects	have	the	same	locations	for	the	primary	peak	and	secondary	peaks.	

While	the	secondary	peak	detection	algorithm	aimed	to	increase	the	accuracy	and	
decrease	the	loss	of	information,	it	does	so	at	a	cost:	time.		Since	the	secondary	peak	detection	
process	was	so	computationally	intensive,	we	also	implemented	a	caching,	saving,	and	loading	
system	in	order	to	speed	up	the	aforementioned	process.		Caching	allows	the	user	to	save	as	
much	as	15	minutes	for	32	subjects.			
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In	addition,	numerous	edits	to	the	software’s	GUI	were	made	in	order	to	make	the	
dialogues	for	additional	input	parameters,	such	as:	added	number	of	samples	to	take	before	
and	after	the	secondary	peak,	added	option	to	use	new	peak	detection	algorithm,	and	removal	
of	some	of	the	unneeded	parameters.			

Lastly,	we	tested	to	the	software	by	adjusting	seven	target	parameters,	namely:	samples	
around	the	primary	and	secondary	peaks,	the	number	of	bins	selected	for	each	model,	and	the	
number	of	spectrograms	to	use	for	training	and	for	testing.			 	

Testing	Results	

	 The	following	chart	is	a	summary	of	the	data	created	from	the	optimization	of	THIS	
program’s	parameters	over	87	iterations.	

Figure	8	–	A	table	showing	the	streamlined	optimization	process	for	the	Tokotch	peak	detection	parameters.		

Our	final	best	1st	rank	match	rating	maxed	at	69%,	only	marginally	higher	than	the	61%	
1st	rank	match	rating	that	was	achieved	through	the	prior	single	peak	detection	algorithm.		
However,	this	dual	peak	detection	appears	to	have	a	much	higher	robustness	rating	in	regards	
to	its	parameters.		The	O’Brien	peak	detection	algorithm’s	parameters	are	very	volatile	and	

Trial	
#	

Peak	
Detection	

#	
Train	
Segs	

#	
Test	
Segs	

#	
Bins	

Before	
Primary	

After	
Primary	

Before	
Secondary	

After	
Secondary	

1st	Rank	
Match	
Rate	

0	 O’Brien	 3	 13	 27	 200	 500	 N/A	 N/A	 61%	

1	 Tokotch	 ↑	 13	 27	 200	 200	 200	 200	 66%	

2	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 100	 ↑	

3	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 50	 ↑	 69%	

4	 ↑	 ↑	 ↑	 ↑	 ↑	 220	 ↑	 ↑	 ↑	

5	 ↑	 ↑	 ↑	 ↑	 210	 ↑	 ↑	 ↑	 ↑	

6	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	

7	 ↑	 ↑	 ↑	 25	 ↑	 ↑	 ↑	 ↑	 ↑	

8	 ↑	 ↑	 15	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	

9	 ↑	 15	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	

10	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 30	 ↑	

11	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 25	 ↑	 ↑	

12	 ↑	 ↑	 ↑	 ↑	 ↑	 220	 ↑	 ↑	 ↑	

13	 ↑	 ↑	 ↑	 ↑	 240	 ↑	 ↑	 ↑	 ↑	

14	 ↑	 11	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	 ↑	
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require	extremely	fine	tuning	in	order	to	achieve	its	1st	rank	match	rating	of	61%	whereas	this	
algorithm	showed	69%	1st	rank	match	accuracy	over	almost	half	of	the	total	87	trials	of	
changing	its	parameters.		Not	directly	evident	in	the	data	is	the	dual	peak	detection’s	increase	
of	the	2nd,	3rd,	4th,	and	other	higher	match	rankings	of	the	software.		In	fact,	our	final	optimized	
parameters	had	a	continual	increase	in	higher	order	match	rankings,	with	72%,	78%,	and	81%,	
respectively.				

Conclusion		

	 In	conclusion,	the	implementation	of	the	dual	peak	detection	algorithm	into	the	THIS	
program	has	raised	both	the	1st	rank	match	accuracy	and	stability	with	regards	to	parameter	
changes.		In	addition,	the	dual	peak	detection	algorithm	has	also	increased	the	percentages	of	
lower	rank	match	accuracies.		Some	common	trends	in	the	data,	including	noisy	signals	and	a	
sizeable	subset	of	the	subjects	that	the	classifier	often	took	at	least	24	out	of	32	tries	to	match	
suggest	that	there	could	be	other	factors	at	work	affecting	the	accuracy	of	the	THIS	program.		
For	example,	better	data	could	be	trained	and	tested	on,	whether	that	data	was	better	filtered,	
recorded	more	accurately,	or	even	averaged	with	another	kind	of	signal.		Another	explanation	
might	be	that	our	current	system	of	creating	and	analyzing	spectrograms	of	heartbeats	as	read	
from	a	Laser	Doppler	Vibrometer	is	only	applicable	to	a	sizeable	majority	of	humans	and	has	
outliers	in	a	given	population.		Further	studies	could	include	looking	into	algorithms	that	
dynamically	adjust	target	parameters	in	order	to	achieve	more	accurate	results,	or	even	
algorithms	that	might	replace	those	target	parameters	entirely.		
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